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ABSTRACT 
 
A software tool for signal processing in health monitoring of structural elements composed of laminated layers is presented. This new 
approach to the damage (delamination) identification problem is based on analysis of perturbation in low-frequency vibration 
responses. Generalizing the so-called VDM (Virtual Distortion Method) approach for dynamic problems, a dynamic influence matrix 
D  concept will be introduced. Pre-computing of the time-dependent matrix D  allows for decomposition of the dynamic structural 
response into components caused by external excitation in undamaged structure (the linear part) and components describing 
perturbations caused by the internal defects (the non-linear part). As a consequence, analytical formulae for calculation of these 
perturbations and the corresponding gradients can be derived. The physical meaning of the so-called virtual distortions used in this 
paper can be explained with the help of externally induced strains (non-compatible in general, e.g. caused by piezoelectric 
transducers, similarly to the effect of non-homogeneous heating). The compatible strains and self-equilibrated stresses are structural 
responses to these distortions. Assuming possible locations of all potential defects in advance, an optimisation technique with 
analytically calculated gradients could be applied to solve the problem of the most probable location of defects.  
 
 
 
INTRODUCTION 
 

The damage detection systems based on array of 
piezoelectric transducers sending and receiving strain waves are 
intensively discussed by researchers recently. The signal-
processing problem is the crucial point in this concept and a 
neural network based method is one of the most often suggested 
approaches to develop a numerically efficient solver for this 
problem. 

An alternative way for these techniques is the VDM 
approach. The software tool based on this method can be 
dedicated for different kind of damage, also for delamination 
identification problem, which will be discussed below. 
 The numerical results for delamination 
identification will be presented, both for the static and 
dynamic VDM approach. 
 This paper is a continuation of the paper [5]. 
 
VDM STATIC APPROACH IN DELAMINATION 
MONITORING 
 
 We shall pose the optimisation problem of structural 
damage identification (constraining ourselves temporarily to the 
static case) within the framework of the Virtual Distortion 
Method (cf. [4]). Let us minimise the following function: 
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 which can be interpreted as an average departure of 
the total structural strain εεεεA from the in-situ measured strain εεεεA

M 
in damaged locations A. Taking advantage of the VDM 
formulation we can decompose the strain εεεεA into two parts: 
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 where εεεεA

L denotes the response of undamaged 
structure, D is the influence matrix and εεεεo is the virtual 
distortion vector. As the component εεεεA

L is constant for a given 
external load, the so-called residual strain component εεεεA

R may 
only be varying in the optimisation process with the virtual 
distortion εεεεo as the design variable. 
 
 We shall measure the structural damage in each 
member i with the help of the coefficient µi i.e. with the ratio of 
cross-sectional areas of a damaged member to the undamaged 
one. Consequently we have to impose appropriate constraints on 
this coefficient. As we examine the physical process of 
deterioration of the member cross-section we are interested in 
such µi, which complies with the following constraints: 
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For delamination problems the coefficient µ will finally (after 
optimisation) take only two values: 0 (delamination) or 1 (full 
connection). 
 
 The gradients of the objective function and the 
constraints are expressed in terms of the design variable εεεεo as 
follows: 

 

( )∑ ε−ε−=
ε∂
∂=∇

A
A

M
AAko

k

D2ff
                               (4a) 

mailto:aorlow@ippt.gov.pl
http://ippt.gov.pl/


 
CMM-2005 – Computer Methods in Mechanics  June 21-24, 2005, Częstochowa, Poland 
 

and 
 

( )2
l

o
llkllk

o
k

l
kl

DgnN
ε

ε−εδ=
ε∂

∂==
                                 (4b)

 

 
 
In order to solve the damage identification problem posed by (1) 
and (3) the Gradient Projection Method (cf. [1], [2], [3]) can be 
used as optimisation tool. The Gradient Projection Method is 
based on the idea of projecting the search direction (i.e. the 
direction in which the objective function value decreases) into 
the subspace tangent to the active constraints. For the case of 
linear constraints the optimisation problem can be posed in the 
following way: 
 
min )x(f                                                                                 (5) 
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constraints are stored column-wise. Subscripts i and k run 
through the number of design variables n whereas subscripts j 
and l run through the number of constraints ng. 
 
 If we select only the r active constraints then the 
constraints may be written as follows: 
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 where the matrix N stores gradients of the constraints 
in columns. 
 
 
NUMERICAL EXAMPLE – STATIC CASE 
 
In the modelling of contact layer the following conditions have 
been imposed on the pair of inclined elements (left and right) 
and on the transversal one in each delaminated cell “i” (cf. 
Fig.1): 
        - in the case of transversal compression in delaminated cell 
“i”: 
 

- in the case of non-compressive transversal interactions  in 
delaminated cell “i”: 
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and DiR,jk ,  DiL,jk , DiN,jk  denote influence vectors describing 
strains generated in elements: right, left and normal in the cell 
“i” induced due to unit virtual distortion generated in element 
“jk“. 
 
The above conditions leads to the following effects modelling 
the contact problem in the gap generated due to delamination: 

- in the case of transversal compression in 
delaminated cell “i” the shear forces vanish in the 
contact layer, 

- in the case of non-compressive transversal 
interactions  in delaminated cell “i” the shear forces 
as well as the transversal forces vanish.  

The sets of equations (8), (9) allows determination of virtual 
distortions modelling shear movement and transversal gap 
development along the contact layer. The resultant strains in 
contact elements take the form (10). 
 The algorithm for the contact problem analysis in 
delaminated layer is shown in Table 1. 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Notation used in description of the contact layer. 
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Table 1. The algorithm for the contact problem analysis in delaminated layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                INITIALIZATION 

Determine: 

Linear response undamaged structure 
L
ikε  

influence matrix: jkimD ,    NLRkm ,,, =  

damage  vector iRµ , iLµ , iNµ  

 FOR EACH TIME STEP t: 

Assuming transversal compression in delaminated zone equations (8), (10) allow to determine associated
virtual distortions (cf.(8)),what leads to the following system of equations Ax=b, where: 
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In the case of non-compressive transversal interactions determine associated virtual distortions from
equations (9), (10), what leads to the following system of equations Ax=b, where: 
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Fig.2 (a) Cantilever truss structure consisting of 2 outer layers joined by the inner layer, which exhibits delamination in few locations 
(dashed lines). Sensors (elements able to detect strain) are placed in upper and lower horizontal members marked by bold lines. Static 

vertical force was applied at free end to identify the delamination defects.(b) virtual distortions and damage coefficient values 
obtained during optimization process. (c) optimization routine progress. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. (a) Extensive delamination case. Sensors  are  marked by bold lines. Static vertical force was applied at free end to identify the 

delamination defects.(b) Damage coefficient values obtained in optimization process. (c) Optimization routine progress. 
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 A simple truss model has been used demonstrating the 
problem of identification of delamination zone. The delaminated 
region has been modelled as a very thin layer (composed of truss 
elements also) placed between two thick layers. 
Numerical tests have been done for different delamination zone 
positions and sizes. Optimization routine was successful in 
finding defects, but large number of sensors was used, especially 
in the case of full delamination effect. 
 
 
DYNAMIC CASE 
 

The problem of identification of delaminations defined 
as a static problem leads to multi-sensor observability, which was 
demonstrated above. Let us demonstrate now, that the same 
problem, defined as a dynamic one, allows us to use only few 
sensors. Assuming impact excitation (generated by an actuator), 
transmitted along the beam and measured by a sensor located in a 
distance, the inverse dynamic analysis has to be performed in order 
to identify locations and intensities of defects. The Dynamic 
Virtual Distortion Method (Ref. 4), which is based on assumption 
that the virtual distortions depend on time, can be applied as the 
solver of the current identification problem. Both the structural 
response and influence matrix are time-dependent, and the formula 
for measured strain development (2) takes now the following form: 
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 It is important to note, that time-dependent influence 
matrix is obtained for unit impulse excitations applied in time 
instant t=0 (it means that excitation has non-zero value only for one 
time step). The unit impulse excitation can be supplied in form of 
initial velocity conditions: m

tPV ∆=)0( , where P denotes 
compensative force corresponding to locally generated unit virtual 

distortion impulse 10 =ε , t∆ denotes the integration time step, 
and m - the mass concentrated in the loaded element. Having the 
influence matrix )(, tD jkA (in the case of only one sensor 

)(, tD jkA  describes strain in observable element A, for each 

possible location of compensative forces) we can calculate the 
superposition of linear, time-dependent structural responses. 
 In case of non-extensive delamination (e. g. one-section) 
the normal forces in the contact layer have non-zero values. In case 
of extensive delamination there can appear the efect of  an open 
gap, when the normal forces in the contact layer (in delaminated 
zone) vanish. Such situation is illustrated in Fig. 4. The damage 
was localized in the middle part of the structure (elements marked 
as dotted lines) and delamination crack size was near 1/3 length of 
the beam. As it is shown in Fig. 4c, when the strains for a vertical 
element placed in the damaged region (bold line)  become positive, 

virtual distortions  0
iβ take non-zeroes values (it’s the open gap 

situation). 
 
 
 
 
 
 
 
 

Fig.4 Extensive delamination case. (a) Numerical model (dotted 
lines-damage, bold lines-sensors, arrow-excitation point), (b) 
delaminated layer behaviour for the time moment t=0.00183 s, (c) 
responses of the undamaged and damaged structure for vertical 
element localized inside the delaminated zone, (d) responses for the 
sensor placed near the excitation point, (e) responses for the sensor 
placed near the free end of the structure. 
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The inverse analysis leads to minimisation of the objective function 
describing differences between the measured response M

Aε and the 

modelled one Aε  (expressed by Eq. 8). Finally, the defect 
identification problem takes the following form: 
 

2))()((min tt A
t

M
A εε −∑                                                  (12) 

 
subject to the following  constraints, where µ is defined 

by the time-dependent version of the formula (3): 
 

10 ≤≤ iµ                                                                                 (13) 

132-element truss-structure model has been used in the 
dynamic case presented below (Fig.6). The natural frequencies for 
this model (without damage) were: 

 
1) 28.032 
2) 154.73 
3) 381.83 
4) 666.16 
5) 1004.3 
6) 1396.4 
 
The natural frequencies for one damaged section are 

presented in table 2. 

 
 

 
Table 2: Natural frequencies for damaged structure. 

damaged section 
number 

I 
natural 

frequency 

II 
natural frequency III natural frequency IV 

natural frequency V natural frequency VI natural 
frequency 

1 28.012 153.76 378.52 661.83 1001.4 1395.6 
2 27.916 149.81 371.58 661.58 1004.3 1391.9 
3 27.913 151.16 380.98 660.13 985.83 1389.4 
4 27.922 153.08 378.87 650.50 1003.7 1383.3 
5 27.936 154.44 371.70 665.24 985.54 1391.2 
6 27.955 154.68 373.54 654.86 998.46 1382.2 
7 27.976 154.09 380.74 645.13 991.33 1395.6 
8 27.999 153.59 380.55 663.65 982.6 1372.3 
9 28.018 153.82 377.23 661.80 1004.0 1393.1 
10 28.024 153.93 374.46 645.24 970.94 1359.8 
 
 

 
The frequency change in case of small, one-section 

damage which is inserted in different location along the contact 
layer, is small for I and II natural frequency. More evident changes 
occur for frequencies from III up to VI natural frequency of the 
structure . 
 Let’s discuss the case of damage located in section  5 
(Fig. 5). The excitation signal is one period of the sinusoidal wave 
of the frequency corresponding to IV natural frequency of the 
undamaged structure (666.16 Hz). The first gradient values are 
very important for the optimization routine. For the one-section 
delamination damage case, the gradient disturbance has a localized 
character. It means that optimal sensor location is near the 
damaged section (first gradients for sensors placed in long distance 
from damage are flat). 
 There will be two cases of sensor location compared. In 
the case of one sensor (Fig. 5) placed near the free end of the 

structure, gradient values at the begining of the optimization 
process are at the same level (do not show that damage is localized 
in section 5). After 80 iterations the goal function value is 
approaching zero but still decreasing. As shown in Fig. 8b the 
damage coefficient for section  5-th is also near zero. It seams to be 
promising for identification but very time-consuming. 
 In the case of three sensors the first gradient with index 
5 is at higher level than others, and we have quite good 
identification results already after 20 iterations. 
The computation of gradients for this case was done for every of 
the three sensors (in every optimization iteration). The way for 
doing computation faster is to evaluate the most possible location 
of damage (using results from a few sensors) and compute 
gradients only for the sensor with the biggest difference between 
the damaged and.undamaged response. 

 

Fig.5 Truss-structure model (not scaled) with the sensors (bold lines) and  the excitation point (arrow) . 
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Fig. 6 Gradient values (one-section damage case), a) for one sensor placed near the free end of the structure, b) for three sensors. 
 

Fig. 7 Identification results for one sensor. a) Damage coefficient 
values at last iteration, b) damage coefficient values for each 
iteration, c) evolution of gradients, d) goal function changes . 

Fig. 8 Identification results for three sensors. a) Damage 
coefficient values at last iteration, b) damage coefficient values for 
each iteration, c) evolution of gradients, d) goal function changes. 
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REAL-TIME DETECTION OF DELAMINATION 
 
 The previously discussed cases (the static and the 
dynamic one) can be considered as  aposteriori  testing detecting 
and identifying already existing delaminations. However, in many 
applications a real-time health monitoring is the challenge. 
Heaving sensor system mounted  permanently to the operating 
structure, the damage detection “in motion” seams to be feasible. 
Let us discuss the case of our testing beam under steady-state 
excitation ( 380 Hz ) with delemination (in section No.5) generated 
in the time step 500 (Fig. 9 ). The strain evolution in the series of 
elements next to the contact layer is demonstrated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9 Responses (damaged and undamaged) for sensor placed 

above section VI. 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 a) Modification of the response due to the delamination in 
5-th section, b) field between damaged and undamaged response. 

 

Extracting wave propagation due to the delamination effect 
(neglecting response to external excitation) the strain evolution 
shown in Fig.10  can be obtained. 
Two algorithms for automatic identification of delamination based 
on the above results (Fig. 10) can be proposed. The first, a simple 
one, but requiring relatively dens distribution of sensors and the 
second one, more sophisticated but requiring only one or few 
sensors. The first algorithm can be based on determination of the 
pair of two sensors with maximal average signal ( cf. Fig.10b 
demonstrating the field under curves from the Fig. 10a). The 
delamination area is located in-between these maximally loaded 
sensors. The example with more extended delamination (in 
elements No. 5 and 6) is shown in Fig. 12, where location of 
maximally loaded sensors determine length of the defect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 Responses (damaged and undamaged) for sensor placed 
above section VII. 
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b) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12  a) Modification of the response due to the delamination in 
 5-th and 6-th section , b) field between damaged and undamaged 

response. 
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The second algorithm, making use of few sensors (e.g. in elements 
No.2 and 7), can be based on the VDM approach described in the 
previous section and solving gradient based inverse problem. More 
advanced applications of this proposed concept will be presented 
during the conference. 
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